LISFLOOD input files

All input that LISFLOOD requires are either in map or table format. This chapter describes the most important input files. A companion document, the LISFLOOD USER GUIDE provides a list of all the input files required for the model set-up (including both the standard and the optional processes).

Meteorological input variables

The meteorological conditions are the drivers of the hydrological processes. LISFLOOD uses the following meteorological input variables:

Code Description Unit
$P$ Precipitation $[\frac{mm}{day}]$
$ET0$ Potential (reference) evapotranspiration rate $[\frac{mm}{day}]$
$EW0$ Potential evaporation rate from open water surface $[\frac{mm}{day}]$
$ES0$ Potential evaporation rate from bare soil surface $[\frac{mm}{day}]$
$T_{avg}$ Average daily temperature $^\circ C$

Note that the routines for snow melt and soil freezing use empirical relations which are based on daily temperature data. Just as an example, feeding hourly temperature data into the snow melt routine can result in a gross overestimation of snow melt. This is because even on a day on which the average temperature is below $T_m$ (no snow melt),the instantaneous (or hourly) temperature may be higher for a part of the day, leading to unrealistically high simulated snow melt rates. When using sub-daily computational time steps, the computed daily amount of snow melt is reduced according to the sub-daily time interval.

Both precipitation and evaporation are internally converted from intensities $[\frac{mm}{day}]$ to quantities per time step $[mm]$ by multiplying them with the time step, $\Delta t$ (in $days$). For the sake of consistency, all in- and outgoing fluxes will also be described as quantities per time step $[mm]$ in the following, unless stated otherwise. $ET0$, $EW0$ and $ES0$ can be calculated using standard meteorological observations. LISVAP is a dedicated pre-processing application that has been developed for the computation of $ET0$, $EW0$ and $ES0$. The methodologies implemented in LISVAP are detailed in a separate manual.

Input maps

The use of maps is essential to include the sub-grid variability of each parameter.

Table: LISFLOOD input maps.

Map Default name Units, range Description
GENERAL      
MaskMap area.map Unit: -
Range: 0 or 1
Boolean map that defines model boundaries
TOPOGRAPHY      
Ldd ldd.map U.: flow directions
R.: 1 ≤ map ≤ 9
local drain direction map (with value 1-9); this file contains flow directions from each cell to its steepest downslope neighbour. Ldd directions are coded according to the following diagram:

This resembles the numeric key pad of your PC’s keyboard, except for the value 5, which defines a cell without local drain direction (pit). The pit cell at the end of the path is the outlet point of a catchment.
Grad gradient.map U.: $\frac{m}{m}$
R.: map > 0
!!!
Slope gradient
Elevation Stdev elvstd.map U.: $m$
R.: map ≥ 0
Standard deviation of elevation
LAND USE – fraction maps      
Fraction of water fracwater.map U.: [-]
R.: 0 ≤ map ≤ 1
Fraction of inland water for each cell. Values range from 0 (no water at all) to 1 (pixel is 100% water)
Fraction of sealed surface fracsealed.map U.: [-]
R.: 0 ≤ map ≤ 1
Fraction of impermeable surface for each cell. Values range from 0 (100% permeable surface – no urban at all) to 1 (100% impermeable surface).
Fraction of forest fracforest.map U.:[-]
R.: 0 ≤ map ≤ 1
Forest fraction for each cell. Values range from 0 (no forest at all) to 1 (pixel is 100% forest)
Fraction of other land cover fracother.map U.: [-]
R.: 0 ≤ map ≤ 1
Other (agricultural areas, non-forested natural area, pervious surface of urban areas) fraction for each cell.
LAND COVER depending maps      
Crop coef. for forest cropcoef_forest.map U.: [-]
R.: 0.8≤ map ≤ 1.2
Crop coefficient for forest
Crop coef. for other cropcoef_other.map U.: [-]
R.: 0.8≤ map ≤ 1.2
Crop coefficient for other
Crop group number for forest crgrnum_forest.map U.: [-]
R.: 1 ≤ map ≤ 5
Crop group number for forest
Crop group number for forest crgrnum_other.map U.: [-]
R.: 1 ≤ map ≤ 5
Crop group number for other
Manning for forest mannings_forest.map U.: [-]
R.: 0.2≤ map ≤ 0.4
Manning’s roughness for forest
Manning for other mannings_other.map U.: [-]
R.: 0.01≤ map ≤0.3
Manning’s roughness for other
Soil depth for forest for layer1a soildepth1_forest.map U.: $mm$
R.: map ≥ 50
Forest soil depth for soil layer 1a (superficial)
Soil depth for other for layer1a soildepth1_other.map U.: $mm$
R.: map ≥ 50
Other soil depth for soil layer 1a (superficial)
Soil depth for forest for layer1b Soildepth2_forest.map U.: $mm$
R.: map ≥ 50
Forest soil depth for soil layer 1b (upper)
Soil depth for other for layer1b Soildepth2_other.map U.: $mm$
R.: map ≥ 50
Other soil soil depth for soil layer 1b (upper)
Soil depth for forest for layer2 Soildepth3_forest.map U.: $mm$
R.: map ≥ 50
Forest soil depth for soil layer 2 (lower)
Soil depth for other for layer2 Soildepth3_other.map U.: $mm$
R.: map ≥ 50
Other soil soil depth for soil layer 2 (lower)
SOIL HYDRAULIC PROPERTIES (depending on soil texture)      
ThetaSat1a for forest thetas1_forest.map U.: [-]
R.: 0 < map < 1
Saturated volumetric soil moisture content layer 1a
ThetaSat1a for other thetas1_other.map U.: [-]
R.: 0 < map < 1
Saturated volumetric soil moisture content layer 1a
ThetaSat1b for forest thetas2_forest.map U.: [-]
R.: 0 < map < 1
Saturated volumetric soil moisture content layer 1b
ThetaSat1b for other thetas2_other.map U.: [-]
R.: 0 < map < 1
Saturated volumetric soil moisture content layer 1b
ThetaSat2 for forest and other thetas3.map U.: [-]
R.: 0 < map < 1
Saturated volumetric soil moisture content layer 2
ThetaRes1a for forest thetar1_forest.map U.: [-]
R.: 0 < map < 1
Residual volumetric soil moisture content layer 1a
ThetaRes1a for other thetar1_other.map U.: [-]
R.: 0 < map < 1
Residual volumetric soil moisture content layer 1a
ThetaRes1b for forest thetar2_forest.map U.: [-]
R.: 0 < map < 1
Residual volumetric soil moisture content layer 1b
ThetaRes1b for other thetar2_other.map U.: [-]
R.: 0 < map < 1
Residual volumetric soil moisture content layer 1b
ThetaRes2 for forest and other thetar3.map U.: [-]
R.: 0 < map < 1
Residual volumetric soil moisture content layer 2
Lambda1a for forest lambda1_forest.map U.: [-]
R.: 0 < map < 1
Pore size index (λ) layer 1a
Lambda1a for other lambda1_other.map U.: [-]
R.: 0 < map < 1
Pore size index (λ) layer 1a
Lambda1b for forest lambda2_forest.map U.: [-]
R.: 0 < map < 1
Pore size index (λ) layer 1b
Lambda1b for other lambda2_other.map U.: [-]
R.: 0 < map < 1
Pore size index (λ) layer 1b
Lambda2 for forest and other lambda3.map U.: [-]
R.: 0 < map < 1
Pore size index (λ) layer 2
GenuAlpha1a for forest alpha1_forest.map U.: [-]
R.: 0 < map < 1
Van Genuchten parameter α layer 1a
GenuAlpha1a for other alpha1_other.map U.: [-]
R.: 0 < map < 1
Van Genuchten parameter α layer 1a
GenuAlpha1b for forest alpha2_forest.map U.: [-]
R.: 0 < map < 1
Van Genuchten parameter α layer 1b
GenuAlpha1b for other alpha2_other.map U.: [-]
R.: 0 < map < 1
Van Genuchten parameter α layer 1b
GenuAlpha2 for forest and other alpha3.map U.: [-]
R.: 0 < map < 1
Van Genuchten parameter α layer 2
Sat1a for forest ksat1_forest.map U.: $\frac{cm} {day}$
R.: 1 ≤ map ≤ 100
Saturated conductivity layer 1a
Sat1a for other ksat1_other.map U.: $\frac{cm} {day}$
R.: 1 ≤ map ≤ 100
Saturated conductivity layer 1a
Sat1b for forest ksat2_forest.map U.: $\frac{cm} {day}$
R.: 1 ≤ map ≤ 100
Saturated conductivity layer 1b
Sat1b for other ksat2_other.map U.: $\frac{cm} {day}$
R.: 1 ≤ map ≤ 100
Saturated conductivity layer 1b
Sat2 for forest and other ksat3.map U.: $\frac{cm} {day}$
R.: 1 ≤ map ≤ 100
Saturated conductivity layer 2
CHANNEL GEOMETRY      
Channels chan.map U.: [-]
R.: 0 or 1
Map with Boolean 1 for all channel pixels, and Boolean 0 for all other pixels on MaskMap
ChanGrad changrad.map U.: $\frac{m} {m}$
R.: map > 0
!!!
Channel gradient
ChanMan chanman.map U.: [-]
R.: map > 0
Manning’s roughness coefficient for channels
ChanLength chanleng.map U.: $m$
R.: map > 0
Channel length (can exceed grid size, to account for meandering rivers)
ChanBottomWidth chanbw.map U.: $m$
R.: map > 0
Channel bottom width
ChanSdXdY chans.map U.: $\frac{m} {m}$
R.: map ≥ 0
Channel side slope Important: defined as horizontal divided by vertical distance (dx/dy); this may be confusing because slope is usually defined the other way round (i.e. dy/dx)!
ChanDepthThreshold chanbnkf.map U.: $m$
R.: map > 0
Bankfull channel depth
DEVELOPMENT OF VEGETATION OVER TIME      
LAIMaps for forest lai_forest U.: $\frac{m^2} {m^2}$
R.: map ≥ 0
Pixel-average Leaf Area Index for forest
LAIMaps for irrigated areas lai_irrigation U.: $\frac{m^2} {m^2}$
R.: map ≥ 0
Pixel-average Leaf Area Index for irrigated areas
LAIMaps for other lai_other U.: $\frac{m^2} {m^2}$
R.: map ≥ 0
Pixel-average Leaf Area Index for other
DEFINITION OF INPUT/OUTPUT TIMESERIES      
Gauges outlets.map U.: [-]
R.: For each station an individual number
Nominal map with locations at which discharge timeseries are reported (usually correspond to gauging stations)
Sites sites.map U.: [-]
R.: For each station an individual number
Nominal map with locations (individual pixels or areas) at which timeseries of intermediate state and rate variables are reported (soil moisture, infiltration, snow, etcetera)

Table: Optional maps that define grid size.

Map Default name Units, range Description
PixelLengthUser pixleng.map U.: $m$
R.: map > 0
Map with pixel length
PixelAreaUser pixarea.map U.: $m$
R.: map > 0
Map with pixel area

Tables

The following table gives an overview of the relevant tables required by LISFLOOD.

Table: LISFLOOD input tables.

Table Default name Description
LAND USE    
Day of the year -> LAI LaiOfDay.txt Lookup table: Day of the year -> LAI map
LAKE MODULE    
Lake ID -> area lakearea.txt Lookup table: lake ID -> lake surface area $[m^2]$
Lake ID -> $\alpha$ lakea.txt Lookup table: lake ID -> lake parameter $\alpha$
Lake ID -> av. inflow lakeavin.txt Lookup table: lake ID -> lake average inflow $[m^3/s]$
RESERVOIR MODULE    
Reservoir ID -> total storage rstor.txt Lookup table: reservoir ID -> total reservoir storage volume $[m^3]$
Reservoir ID -> conservative storage rclim.txt Lookup table: reservoir ID -> conservative storage volume $[m^3]$
Reservoir ID -> flood storage limit rflim.txt Lookup table: reservoir ID -> conservative storage volume $[m^3]$
Reservoir ID -> minimum outflow rminq.txt Lookup table: reservoir ID -> minimum outflow $[m^3\s]$
Reservoir ID -> maximum non-damaging outflow rndq.txt Lookup table: reservoir ID -> maximum non-damaging outflow $[m^3\s]$

🔝