# LISFLOOD input files

All input that LISFLOOD requires are either in map or table format. Before showing a listing of all LISFLOOD input files, first some important remarks on the meteorological input data LISFLOOD requires.

## Treatment of meteorological input variables

The meteorological conditions provide the driving forces behind the water balance. LISFLOOD uses the following meteorological input variables:

Code Description Unit
$P$ Precipitation $[\frac{mm}{day}]$
$ET0$ Potential (reference) evapotranspiration rate $[\frac{mm}{day}]$
$EW0$ Potential evaporation rate from open water surface $[\frac{mm}{day}]$
$ES0$ Potential evaporation rate from bare soil surface $[\frac{mm}{day}]$
$T_{avg}$ Average daily temperature $^\circ C$

Note that the model needs daily average temperature values, even if the model is run on a smaller time interval (e.g. hourly). This is because the routines for snowmelt and soil freezing are use empirical relations which are based on daily temperature data.. Just as an example, feeding hourly temperature data into the snowmelt routine can result in a gross overestimation of snowmelt. This is because even on a day on which the average temperature is below $T_m$ (no snowmelt), the instantaneous (or hourly) temperature may be higher for a part of the day, leading to unrealistically high simulated snowmelt rates.

Both precipitation and evaporation are internally converted from intensities $[\frac{mm}{day}]$ to quantities per time step $[mm]$ by multiplying them with the time step, $\Delta t$ (in $days$). For the sake of consistency, all in- and outgoing fluxes will also be described as quantities per time step $[mm]$ in the following, unless stated otherwise. $ET0$, $EW0$ and $ES0$ can be calculated using standard meteorological observations.

To this end a dedicated pre-processing application has been developed (LISVAP), which is documented in a separate manual.

## LISFLOOD input maps

Table: LISFLOOD input maps.

Map Default name Units, range Description
GENERAL
Range: 0 or 1
Boolean map that defines model boundaries
TOPOGRAPHY
Ldd ldd.map U.: flow directions
R.: 1 ≤ map ≤ 9
local drain direction map (with value 1-9); this file contains flow directions from each cell to its steepest downslope neighbour. Ldd directions are coded according to the following diagram: This resembles the numeric key pad of your PC’s keyboard, except for the value 5, which defines a cell without local drain direction (pit). The pit cell at the end of the path is the outlet point of a catchment.
Grad gradient.map U.: $\frac{m}{m}$
R.: map > 0
Elevation Stdev elvstd.map U.: $m$
R.: map ≥ 0
Standard deviation of elevation
LAND USE – fraction maps
Fraction of water fracwater.map U.: [-]
R.: 0 ≤ map ≤ 1
Fraction of inland water for each cell. Values range from 0 (no water at all) to 1 (pixel is 100% water)
Fraction of sealed surface fracsealed.map U.: [-]
R.: 0 ≤ map ≤ 1
Fraction of impermeable surface for each cell. Values range from 0 (100% permeable surface – no urban at all) to 1 (100% impermeable surface).
Fraction of forest fracforest.map U.:[-]
R.: 0 ≤ map ≤ 1
Forest fraction for each cell. Values range from 0 (no forest at all) to 1 (pixel is 100% forest)
Fraction of other land cover fracother.map U.: [-]
R.: 0 ≤ map ≤ 1
Other (agricultural areas, non-forested natural area, pervious surface of urban areas) fraction for each cell.
LAND COVER depending maps
Crop coef. for forest cropcoef_forest.map U.: [-]
R.: 0.8≤ map ≤ 1.2
Crop coefficient for forest
Crop coef. for other cropcoef_other.map U.: [-]
R.: 0.8≤ map ≤ 1.2
Crop coefficient for other
Crop group number for forest crgrnum_forest.map U.: [-]
R.: 1 ≤ map ≤ 5
Crop group number for forest
Crop group number for forest crgrnum_other.map U.: [-]
R.: 1 ≤ map ≤ 5
Crop group number for other
Manning for forest mannings_forest.map U.: $m^{-1/3} s$
R.: 0.2≤ map ≤ 0.4
Manning’s roughness for forest
Manning for other mannings_other.map U.: $m^{-1/3} s$
R.: 0.01≤ map ≤0.3
Manning’s roughness for other
Soil depth for forest for layer1a soildep1a_forest.map U.: $mm$
R.: map ≥ 50
Forest soil depth for soil layer 1a
Soil depth for other for layer1a soildep1a_other.map U.: $mm$
R.: map ≥ 50
Other soil depth for soil layer 1a
Soil depth for forest for layer1b soildep1b_forest.map U.: $mm$
R.: map ≥ 50
Forest soil depth for soil layer 1b
Soil depth for other for layer1b soildep1b_other.map U.: $mm$
R.: map ≥ 50
Other soil soil depth for soil layer 1b
Soil depth for forest for layer2 soildep2_forest.map U.: $mm$
R.: map ≥ 50
Forest soil depth for soil layer 2
Soil depth for other for layer2 soildep2_other.map U.: $mm$
R.: map ≥ 50
Other soil soil depth for soil layer 2
SOIL HYDRAULIC PROPERTIES (depending on soil texture)
ThetaSat1a for forest thetas1a_forest.map U.: [V/V]
R.: 0 < map < 1
Saturated volumetric soil moisture content layer 1a
ThetaSat1a for other thetas1a_other.map U.: [V/V]
R.: 0 < map < 1
Saturated volumetric soil moisture content layer 1a
ThetaSat1b for forest thetas1b_forest.map U.: [V/V]
R.: 0 < map < 1
Saturated volumetric soil moisture content layer 1b
ThetaSat1b for other thetas1b_other.map U.: [V/V]
R.: 0 < map < 1
Saturated volumetric soil moisture content layer 1b
ThetaSat2 for forest and other thetas2.map U.: [V/V]
R.: 0 < map < 1
Saturated volumetric soil moisture content layer 2
ThetaRes1a for forest thetar1a_forest.map U.: [V/V]
R.: 0 < map < 1
Residual volumetric soil moisture content layer 1a
ThetaRes1a for other thetar1a_other.map U.: [V/V]
R.: 0 < map < 1
Residual volumetric soil moisture content layer 1a
ThetaRes1b for forest thetar1b_forest.map U.: [V/V]
R.: 0 < map < 1
Residual volumetric soil moisture content layer 1b
ThetaRes1b for other thetar1b_other.map U.: [V/V]
R.: 0 < map < 1
Residual volumetric soil moisture content layer 1b
ThetaRes2 for forest and other thetar2.map U.: [V/V]
R.: 0 < map < 1
Residual volumetric soil moisture content layer 2
Lambda1a for forest lambda1a_forest.map U.: [-]
R.: map>0
Pore size index (λ) layer 1a
Lambda1a for other lambda1a_other.map U.: [-]
R.: map>0
Pore size index (λ) layer 1a
Lambda1b for forest lambda1b_forest.map U.: [-]
R.: map>0
Pore size index (λ) layer 1b
Lambda1b for other lambda1b_other.map U.: [-]
R.: map>0
Pore size index (λ) layer 1b
Lambda2 for forest and other lambda2.map U.: [-]
R.: map>0
Pore size index (λ) layer 2
GenuAlpha1a for forest alpha1a_forest.map U.: $\frac{1} {cm}$
R.: 0 < map < 1
Van Genuchten parameter α layer 1a
GenuAlpha1a for other alpha1a_other.map U.: $\frac{1} {cm}$
R.: 0 < map < 1
Van Genuchten parameter α layer 1a
GenuAlpha1b for forest alpha1b_forest.map U.: $\frac{1} {cm}$
R.: 0 < map < 1
Van Genuchten parameter α layer 1b
GenuAlpha1b for other alpha1b_other.map U.: $\frac{1} {cm}$
R.: 0 < map < 1
Van Genuchten parameter α layer 1b
GenuAlpha2 for forest and other alpha2.map U.: $\frac{1} {cm}$
R.: 0 < map < 1
Van Genuchten parameter α layer 2
Sat1a for forest ksat1a_forest.map U.: $\frac{mm} {day}$
R.: map>0
Saturated conductivity layer 1a
Sat1a for other ksat1a_other.map U.: $\frac{mm} {day}$
R.: map>0
Saturated conductivity layer 1a
Sat1b for forest ksat1b_forest.map U.: $\frac{mm} {day}$
R.: map>0
Saturated conductivity layer 1b
Sat1b for other ksat1b_other.map U.: $\frac{mm} {day}$
R.: map>0
Saturated conductivity layer 1b
Sat2 for forest and other ksat2.map U.: $\frac{mm} {day}$
R.: map>0
Saturated conductivity layer 2
CHANNEL GEOMETRY
Channels chan.map U.: [-]
R.: 0 or 1
Map with Boolean 1 for all channel pixels, and Boolean 0 for all other pixels on MaskMap
ChanGrad changrad.map U.: $\frac{m} {m}$
R.: map > 0
!!!
ChanMan chanman.map U.: $m^{-1/3} s$
R.: map > 0
Manning’s roughness coefficient for channels
ChanLength chanleng.map U.: $m$
R.: map > 0
Channel length (can exceed grid size, to account for meandering rivers)
ChanBottomWidth chanbw.map U.: $m$
R.: map > 0
Channel bottom width
ChanSdXdY chans.map U.: $\frac{m} {m}$
R.: map ≥ 0
Channel side slope Important: defined as horizontal divided by vertical distance (dx/dy); this may be confusing because slope is usually defined the other way round (i.e. dy/dx)!
ChanDepthThreshold chanbnkf.map U.: $m$
R.: map > 0
Bankfull channel depth
METEOROLOGICAL VARIABLES
PrecipitationMaps pr U.: $\frac{mm} {day}$
R.: map ≥ 0
Precipitation rate
TavgMaps ta U.: $°C$
R.:-50 ≤map ≤ +50
Average daily temperature
E0Maps e U.: $\frac{mm} {day}$
R.: map ≥ 0
Daily potential evaporation rate, free water surface
ES0Maps es U.: $\frac{mm} {day}$
R.: map ≥ 0
Daily potential evaporation rate, bare soil
ET0Maps et U.: $\frac{mm} {day}$
R.: map ≥ 0
Daily potential evapotranspiration rate, reference crop
DEVELOPMENT OF VEGETATION OVER TIME
LAIMaps for forest lai_forest U.: $\frac{m^2} {m^2}$
R.: map ≥ 0
Pixel-average Leaf Area Index for forest
LAIMaps for other lai_other U.: $\frac{m^2} {m^2}$
R.: map ≥ 0
Pixel-average Leaf Area Index for other
DEFINITION OF INPUT/OUTPUT TIMESERIES
Gauges outlets.map U.: [-]
R.: For each station an individual number
Nominal map with locations at which discharge timeseries are reported (usually correspond to gauging stations)
Sites sites.map U.: [-]
R.: For each station an individual number
Nominal map with locations (individual pixels or areas) at which timeseries of intermediate state and rate variables are reported (soil moisture, infiltration, snow, etcetera)

Table: Optional maps that define grid size.

Map Default name Units, range Description
PixelLengthUser pixleng.map U.: $m$
R.: map > 0
Map with pixel length
PixelAreaUser pixarea.map U.: $m$
R.: map > 0
Map with pixel area

## Tables

In the previous version of LISFLOOD a number of model parameters are read through tables that are linked to the classes on the land use and soil (texture) maps. Those tables are replaced by maps (e.g. soil hydraulic property maps) in order to include the sub-grid variability of each parameter.

Therefore only one default table is used in the standard LISFLOOD setting. The following table gives an overview:

Table: LISFLOOD input tables.

Table Default name Description
LAND USE
Day of the year -> LAI LaiOfDay.txt Lookup table: Day of the year -> LAI map

🔝